quartet for the methylene protons, which suggests that no mirror plane passes through the methylene carbon atoms. However, the aryl ring must not be able to rotate rapidly, since two types of isopropyl methyl groups are observed by NMR.

The reaction between **1b** and 2 equiv of hydrazine yields $W(NAr)[N(NTs)_2](\eta^2-NHNH_2)Cl(2)$ (eq 3) in 49% yield. We

$$1b + 2NH_2NH_2 \longrightarrow [N_2H_5][OTf] + \begin{pmatrix} A_1 & T_5 \\ N & N_1 & N_1 \\ N & N_1 & N_1$$

propose that the reaction proceeds via a hydrazine adduct (see 3 below), which is subsequently deprotonated rapidly by hydrazine. The structure of 2, as determined in an X-ray crystallography study, is shown in Figure 1.5 The core of the molecule can be loosely described as a pentagonal bipyramid with the tridentate and hydrazido ligands defining the equatorial plane and the imido and chloride ligands occupying axial positions. The five ligands in the equatorial positions bend away slightly from the ideal plane containing them and the W atom; the W atom sits ~ 0.23 Å above the least-squares plane defined by the five nitrogen atoms. Both WC_2N_2 rings are puckered. The fact that the N(3)-W-N(5) angle (146.0 (3)°) is considerably less than 180° allows the hydrazido ligand to bind to W in η^2 -fashion in the pseudoequatorial plane. The W-N(1) and W-N(2) distances (2.07 (1) and 2.061)(8) Å) and N(1)–W–N(2) angle (39.8 (4)°) are within experimental error the same as those found in isoelectronic $Cp^*WMe_4(\eta^2-NHNH_2)$,⁶ whose structure is roughly analogous (three methyl groups and the hydrazido ligand in a pentagonal arrangement). The N(1)-N(2) distance (1.41 (1) Å) should be compared with the N-N distances in the two independent molecules of WCp*Me₄(η^2 -NHNH₂) (1.39 (3) and 1.35 (3) Å),⁶ [WCp*Me₃(η^2 -NHNH₂)]⁺ (1.39 (1) Å),⁶ and [Co[MeC-(CH₂PPh₂)₃](η^2 -NHNH₂)]⁺ (1.384 (14) Å).⁷ It is interesting to note that H(2A), which was located, points away from the imido ligand and that the O(3)-H(2A) distance is only 2.2 (1) Å, which could be construed as a hydrogen bond. (The NH proton in $Cp^*WMe_4(\eta^2-NHNH_2)$ also points away from the Cp^* ligand.) In this circumstance no orbital is available to receive the lone electron pair on N(2), and if the imido ligand in 2 behaves as a 2π , 1σ ligand, the metal electron count in any case is 18.

One would expect that the hydrazido ligand in 2 could be protonated easily. Addition of 1 equiv of triflic acid to 2 yields yellow $[W(NAr)[N(NTs)_2](\eta^2-NH_2NH_2)Cl][OTf]$ (3). Compound 3 is virtually insoluble in hydrocarbon solvents and diethyl ether, and only sparingly soluble in dichloromethane and THF. The structure of 3 is proposed to be analogous to that of 2. Note added in proof: The structure of 3 has now been solved and shown to be essentially the same as that of 2 with W-N bond lengths of 2.11 and 2.12 Å and an N-N bond length of 1.42 Å. The proton NMR spectrum of 3 in CD_2Cl_2 shows only one broad resonance at 8.60 ppm for the protons in the NH_2NH_2 ligand, consistent with rapid proton exchange or hydrazine exchange in η^2 -N₂H₄ under these conditions. Low solubility of 3 has prevented elucidation of the exchange process at low temperature. Monometallic complexes that contain unsubstituted η^2 -hydrazine are extremely rare.' There is a remote possibility that the proton has added somewhere other than the electron pair on N(2).

Reduction of 2 and 3 by zinc amalgam and subsequent addition of concentrated HCl to the reaction mixture generates 1.19 and 1.67 equiv of ammonia, respectively.⁸ Analogous reactions in the presence of 2,6-lutidine hydrochloride yield only 0.46 and 0.61 equiv of ammonia, respectively. We believe that protonation of the hydrazido(1-) and hydrazine ligands in 2 and 3 competes with reduction, although experimental problems so far have prevented confirmation that hydrazine is formed in such circumstances.

We conclude that the $W(NAr)[N(NTs)_2]$ core shows some characteristics of the WCp*Me₃ core^{1,2} in forming complexes that contain N_2H_{ν} ligands which can be reduced in the presence of protons to give ammonia. Future studies will focus on variations of this ligand set and expansion of the chemistry of complexes that contain it and related ligand systems that are relevant to the reduction of dinitrogen to ammonia. Note added in proof: An example of a $NHNH_2(1-)$ complex of molybdenum in a sulfur coordination sphere has just been published (Sellmann, D.; Kern, W.; Pöhlmann, G.; Knoch, F.; Moll, M. Inorg. Chim. Acta 1991, 185, 155). A NHNMe₂ derivative was structurally characterized.

Acknowledgment. R.R.S. thanks the National Institutes of Health for support through Grant GM 31978 and Professor J.-M. Lehn and Dr. W. Hosseini for fruitful discussions. We thank M. G. Vale and Dr. W. M. Davis for advice and assistance.

Supplementary Material Available: Text giving experimental details, NMR spectral data, analytical data, and a description of the X-ray structure determination, a labeled ORTEP drawing, and tables listing crystal data, final positional parameters, final thermal parameters, bond distances and angles, and least-squares planes (19 pages); a listing of observed and calculated structure factors (33 pages). Ordering information is given on any current masthead page.

Department of Chemistry 6-331 **Richard R. Schrock*** Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Received May 29, 1991

Shi'ang Cai

Low-Temperature Spectroelectrochemical Study of $(Bu_4N)Re_2Cl_9$ and $(Bu_4N)_2Re_2Cl_8$: Discovery of $Re_2Cl_9^{3-1}$

In the 27 years since the recognition¹ of the first quadruple metal-metal bond in $\text{Re}_2\text{Cl}_8^{2-}$, dirhenium halide complexes have continued to challenge both experimentalists and theoreticians. We now report that the spectroelectrochemical study of (Bu₄N)₂Re₂Cl₈ and (Bu₄N)Re₂Cl₉ at low temperature has resulted in the identification of the new species Re₂Cl₈⁰, Re₂Cl₉⁰, Re₂Cl₉³⁻, and transient Re₂Cl₉⁴⁻. Furthermore, the octa- and nonahalide forms are shown to interconvert in a systematic fashion, controlled by oxidation level.

Redox processes alter the occupancy of the metal-based orbital manifold responsible for Re–Re multiple bonding in the octahalide. Elegant electrochemical investigations² of variously substituted

Crystal data for WClS₂O₄N₇C₃₅H₄₄ at -72 (1) °C: monoclinic, space group P2₁/n, a = 13.892 (2) Å, b = 16.111 (3) Å, c = 16.537 (3) Å, $\beta = 95.60$ (2)°, Z = 4, $\rho = 1.641$ g cm⁻³, $\mu = 34.31$ cm⁻¹. A total of 5236 reflections were collected in the range of 2.8° < 20 < 45° (h,k,±l). (5) Of these, 5082 were unique and 3534 with $I > 3.00\sigma(I)$ were used in the structure solution. $\vec{R}(F) = 0.043$ and $R_{*}(F) = 0.045$. One acetonitrile molecule was found in each asymmetric unit of the cell. There is no contact between the tungsten molecule and acetonitrile in the asymmetric unit. (6) Liu, A. H.; O'Regan, M. B.; Finch, W. C.; Payack, J. F.; Schrock, R.

R. Inorg. Chem. 1988, 27, 3574. Vogel, S.; Barth, A.; Huttner, G.; Klein, T.; Zsolnai, L.; Kremer, R.

⁽⁷⁾ Angew. Chem., Int. Ed. Engl. 1991, 30, 303.

⁽a) Complexes 2 and 3 ((3-4) \times 10⁻² mmol) and 6 equiv of zinc (8) amalgam (and 12 equiv of lutidine hydrochloride) were placed in a 50-mL Schlenk flask, and then cold THF (10 mL) was added. The reaction flask was sealed with a rubber septum, and the mixture was stirred at room temperature for two days. Concentrated HCl (0.1 mL) was added to the reaction mixture by syringe. The solvent was then removed in vacuo, and the residue was extracted with distilled water. The colorless extract was tested quantitatively for ammonia by using the indophenol method.^{8b} (b) Chaney, A. L.; Marbach, E. P. Clin. Chem. 1962, 8, 130.

⁽a) Cotton, F. A.; Curtis, N. F.; Johnson, B. F. G.; Robinson, W. R. (1) Inorg. Chem. 1965, 4, 326. (b) Cotton, F. A.; Harris, C. B. Inorg Chem. 1965, 4, 330. (c) Cotton, F. A. Inorg. Chem. 1965, 4, 334.

Figure 1. Voltammetric study of (Bu₄N)Re₂Cl₉: (a, b) CH₂Cl₂, 208 K, 100 mV/s; (c) CH₂Cl₂/CH₃CN (1:1), 223 K, 100 mV/s, including cyclic ac scan.

Scheme I

 $\operatorname{Re}_{2}X_{8-y}L_{y}^{n}$ species (X = halogen, L = neutral donor) have probed the nature of this bond as a function of oxidation state, and complexes have been characterized with Re-Re formal bond orders ranging from 4 ($\sigma^2 \pi^4 \delta^2$) to electron-rich 3 ($\sigma^2 \pi^4 \delta^2 \delta^{*2}$).^{2,3}

In contrast, for the homoleptic complexes $\text{Re}_2 X_8^{*}$ (X = F, Cl, Br, I) only the quadruply bonded dianion has been isolated. At ambient temperature electron-rich Re₂Cl₈³⁻ forms only transiently in an irreversible electrochemical reduction,⁴ while the electronpoor Re₂Cl₈⁻ species of the same bond order is a short-lived product of both photochemical and electrochemical oxidation of Re₂Cl₈^{2-,5} In recent electrochemical studies in chloroaluminate molten salt solutions, Hussey and co-workers⁶ observed that Re₂Cl₉²⁻ decomposes to Re₂Cl₈²⁻ upon reduction while Re₂Cl₈²⁻ can be reduced reversibly to Re₂Cl₈³⁻. Anodic processes of Re₂Cl₉⁻ or $Re_2Cl_8^{2-}$ are inaccessible in the melts. The advantage of lowtemperature electrochemical studies in such systems has been demonstrated by our work on the later nonahalides $M_2X_9^{3-}$ (M = Ru, Os, Ir; X = Cl, Br),⁷ where several previously unknown

- (a) Salmon, D. J.; Walton, R. A. J. Am. Chem. Soc. 1978, 100, 991. (b) Brant, P.; Salmon, D. J.; Walton, R. A. J. Am. Chem. Soc. 1978, 100, 4424. (c) Hertzer, C. A.; Walton, R. A. Inorg. Chim. Acta 1977, 22, L10. (d) Cotton, F. A.; Dunbar, K. R.; Falvello, L. R.; Tomas, M.; Walton, R. A. J. Am. Chem. Soc. 1983, 105, 4950. (e) Dunbar, K. R.; (2) Walton, R. A. Inorg. Chem. 1985, 24, 5. (f) Root, D. R.; Blevins, C. H.; Lichtenberger, D. L.; Sattelberger, A. P.; Walton, R. A. J. Am. Chem. Soc. 1986, 108, 953.
- (a) Ebner, J. R.; Walton, R. A. Inorg. Chem. 1975, 14, 1987. (b)
 (b) Ebner, J. R.; Tyler, D. R.; Walton, R. A. Inorg. Chem. 1976, 15, 833.
 (c) Hertzer, C. A.; Myers, R. E.; Brant, P.; Walton, R. A. Inorg. Chem. (1) 77, 2383. (d) Dunbar, K. R.; Walton, R. A. Inorg. Chim. Acta
 1984, 87, 185. (e) Cotton, F. A.; Vidyasagar, K. Inorg. Chim. Acta
 1989, 166, 105. (f) Cotton, F. A.; Price, A. C.; Vidyasagar, K. Inorg. Chem. 1990, 29, 5143.
- (4)
- (6)
- Chem. 1990, 29, 5143.
 (a) Cotton, F. A.; Robinson, W. R.; Walton, R. A. Inorg. Chem. 1967, 6, 1257.
 (b) Cotton, F. A.; Pedersen, E. Inorg. Chem. 1975, 14, 383.
 Nocera, D. G.; Gray, H. B. Inorg. Chem. 1984, 23, 3686.
 (a) Strubinger, S. K. D.; Sun, I. W.; Cleland, W. E.; Hussey, C. L. Inorg. Chem. 1990, 29, 993.
 (b) Strubinger, S. K. D.; Sun, I. W.; Cleland, W. E.; Hussey, C. L. Inorg. Chem. 1990, 29, 993.
 (c) Coombe, V. T.; Heath, G. A.; Stephenson, T. A.; Vattis, D. K. J. Chem. Soc., Dalton Trans. 1983, 2307.
 (b) Heath, G. A.; Humphrey, D. G. J. Chem. Soc., Chem. Commun. 1990, 672.
 (c) Heath, G. A.; (7) Kennedy, B. J. Proceedings of the 27th International Conference in Coordination Chemistry, Broadbeach, Australia, 1989; abstract W42. (d) Heath, G. A.; Kennedy, B. J. To be published.

Figure 2. Voltammetric study of (Bu₄N)₂Re₂Cl₈: (a) CH₂Cl₂, 260 K, 50 mV/s; (b) CH₂Cl₂, 260 K, 200 mV/s; (c) CH₂Cl₂/CH₃CN (1:1), 220 K, 200 mV/s, including ac scan.

Figure 3. (a) Spectroelectrochemical monitoring of the reversible reoxidation of Re₂Cl₉³⁻ to Re₂Cl₉²⁻, in CH₂Cl₂ and 0.5 M [Bu₄N]Cl at 188 K. (b) UV/vis spectrum of $\text{Re}_2\text{Cl}_9^{3-}$ at 188 K.

oxidation states were characterized in chilled CH2Cl2. The present results are summarized in Scheme I.

Four stepwise one-electron processes are observed in the voltammetry⁸ of $(Bu_4N)Re_2Cl_9$. In CH_2Cl_2 solution at 208 K, reversible reductions to $Re_2Cl_9^{2-}$ and $Re_2Cl_9^{3-}$ (Figure 1a) are followed by a further well-defined but nonreversible (ec) reduction at -1.81 V, forming Re₂Cl₈³⁻ as a daughter product (vide infra). Cyclic scans confirm the growth of a reversible wave at -0.64 V assigned to $Re_2Cl_8^{2-}/Re_2Cl_8^{3-}$ (Figure 1b). There is voltammetric evidence for transient existence of Re₂Cl₉⁴⁻ as in Scheme I. Similarly, the $\text{Re}_2\text{Cl}_9^{2-}/\text{Re}_2\text{Cl}_9^{3-}$ couple is linked to the chemical reaction $\text{Re}_2\text{Cl}_9^{3-} \rightarrow \text{Re}_2\text{Cl}_8^{2-} + \text{Cl}^-$ at higher temperatures and becomes completely nonreversible well below 273 K. In a CH₂Cl₂/CH₃CN solution at 223 K, a quasi-reversible oxidation to Re_2Cl_9^0 at the extreme potential of 2.53 V is observable by both ac and dc cyclic voltammetry (Figure 1c).

Two one-electron oxidations and one reduction are observed in the voltammetric study of (Bu₄N)₂Re₂Cl₈, in accord with

All solvents were freshly distilled and degassed: 0.5 M [Bu₄N][PF₆] (8) was used as supporting electrolyte; all measurements were carried out with a Princeton Applied Research 170 potentiostat under a dry-N2 atmosphere, versus a Ag/AgCl reference electrode for which the ferrocene/ferrocenium redox couple was measured at 0.55 V.

Figure 4. Spectroelectrochemical monitoring of the reversible oxidation of Re₂Cl₈³⁻ to Re₂Cl₈²⁻, in CH₂Cl₂/CH₃CN (1:1) and 0.5 M [Bu₄N]-[BF₄] at 233 K. Inset: $\delta^2 \delta^* \rightarrow \delta \delta^{*2}$ near-infrared band of Re₂Cl₈³⁻.

Scheme I. In CH₂Cl₂ at 260 K, Re₂Cl₈²⁻ exhibits a reversible reduction to $Re_2Cl_8^{3-}$ (Figure 2a) and an irreversible oxidation near 1.5 V. However, below 220 K, successive reversible oxidations to Re_2Cl_8^- and Re_2Cl_8^0 occur in 1:1 CH₂Cl₂/CH₃CN solution, a compromise between improved solubility and elevated freezing point (Figure 2c). At 260 K, where Re_2Cl_8^- is short-lived, $\text{Re}_2\text{Cl}_9^$ forms as a daughter product $(Re_2Cl_9^{2-}$ is oxidized at the prevailing potential) and is identified by the emerging $Re_2Cl_9^{-}/Re_2Cl_9^{2-}$ couple at 0.75 V (Figure 2b).

The interconversions of $\operatorname{Re}_2\operatorname{Cl}_9^{z-}$ and $\operatorname{Re}_2\operatorname{Cl}_8^{(z-1)-}$, initially detected voltammetrically, were studied spectroelectrochemically by optically transparent thin-layer electrode (OTTLE) techniques described elsewhere.⁹ Reduction of the nonahalide at -0.30 V (in CH₂Cl₂, 213 K) shows the collapse of the Re₂Cl₉²⁻ spectrum and the growth of peaks at 39 900, 38 200, and $34\,800$ cm⁻¹ attributed to Re₂Cl₉³⁻. However, this spectrum rapidly gives way to the readily recognized $\text{Re}_2\text{Cl}_8^{2-}$, even though the reduction is reversible in the voltammetric time scale. Equally, in the time course of the OTTLE experiment, oxidation of Re₂Cl₈²⁻ at 1.55 V at 233 K shows only the emergence of the $Re_2Cl_9^-$ spectrum (ece process, vide supra). In contrast, the reductions of $Re_2Cl_9^{2-}$ at 188 K and of Re₂Cl₈²⁻ at 233 K show sharp isosbestic points consistent with efficient reversible generation of Re₂Cl₉³⁻ and Re₂Cl₈³⁻, respectively (Figures 3 and 4), according to Scheme I.

In summary, the chemical processes associated with the decomposition of electrogenerated dirhenium halide complexes are significantly retarded at low temperature, permitting recognition of four novel species in this study. There is now the prospect of rational synthetic manipulation of the dirhenium systems under suitable conditions. For example, $Re_2Cl_9^{3-}$ and $Re_2Cl_8^{3-}$ may both be accessible by chemical reduction of their corresponding dianions.

The electrochemistry of the Re₂Cl₉^{z-} species parallels the recently reported^{7b} behavior of the diosmium nonahalides, with the rhenium couples shifted negatively by ~ 0.35 V compared to the corresponding (isovalent) steps for $Os_2X_9^{z^-}$. A contrary effect is seen for $Re_2X_8^{z^-}$ and $Os_2X_8^{z^-}$; namely, the rhenium couples are each shifted by ~+0.20 V relative to those of osmium.¹⁰ Clearly, in the octahalides the splitting of the binuclear metal-based orbital manifold overrides the normal periodicity trends established¹¹ for hexahalometallates.

Upon chemical oxidation¹² with Cl₂, or one-electron electrochemical oxidation in the presence of chloride,⁵ face-to-face $Re_2Cl_8^{2-}$ converts to the face-sharing bioctahedral $Re_2Cl_9^{-}$. Our results show that such a rearrangement can also be electrochemically induced with simultaneous abstraction of chloride from further Re₂Cl₈²⁻. Similar behavior is observed voltammetrically in tetrahydrofuran, implying that CH₂Cl₂ is not the source of Cl⁻. We do observe halide-depleted byproducts in the corresponding

oxidation of Re₂Br₈²⁻, and these results will be described separately. Self-abstraction of chloride ions has been reported in the electrochemical oxidation of $Re_2Cl_4L_4$ to $Re_2Cl_5L_3$ and $Re_2Cl_6L_2$ (L $= PR_{1}).^{2a}$

It is remarkable that both Re_2Cl_9 and Re_2Cl_8 stoichiometries can persist over as many as four oxidation levels, Re_2^{8+} to Re_2^{5+} , even though one form is strongly preferred at each stage. The nonachloride is favored in the higher oxidation states, Re_2^{8+} and Re_2^{7+} , while the octachloride is favored for Re_2^{6+} and Re_2^{5+} . Of particular interest is the Re^{III}_2 case, where both $Re_2Cl_8^{2-}$ and Re₂Cl₉³⁻ are now well characterized in solution. Electrochemically induced structural changes have been reported^{7b} between the diosmium deca- and nonahalide complexes but have yet to be identified between diosmium octa- and nonahalides.

The near-infrared electronic spectrum for electrogenerated $Re_2Cl_8^{3-}$ exhibits exceptionally well-developed vibrational fine structure in solution (Figure 4). Assignment of the 6950-cm⁻¹ band as a $\delta^2 \delta^* \rightarrow \delta \delta^{*2}$ transition is unequivocal.^{2d,3a,f} The Frank-Condon progression shows a (Re-Re)⁵⁺ vibrational frequency of approximately 270 cm⁻¹, notably similar to the Raman absorption¹³ (272-275 cm⁻¹) of Re₂Cl₈²⁻. This leads to an estimated extension of ca. 0.07 Å in the Re-Re multiple bond upon electronic excitation (which involves formal reduction of the bond order by one). The δ/δ^* band of Re₂Cl₈³⁻ in chloroaluminate salt solution has also been observed,^{6a} although the details are not yet published. The spectrum of isoelectronic $Tc_2Cl_8^{3-}$ contains a strictly analogous band.¹⁴ Most recently, we have characterized hitherto unknown $\text{Re}_2\text{Br}_8^{3-}$, where the corresponding band is centered at 7200 cm^{-1} .

Our data establish the stoichiometries of all species of Scheme I. Questions still remain with regard to their structures, particularly those of the Re_2Cl_9^0 to $\text{Re}_2\text{Cl}_9^{4-}$ sequence. Thus, the electrochemical reversibility of the $\text{Re}_2^{8+}/\text{Re}_2^{7+}$ and $\text{Re}_2^{7+}/\text{Re}_2^{6+}$ couples for the nonachloride (Figure 1a) is consistent with retention of the D_{3h} geometry¹⁵ of Re₂Cl₉⁻ but also with rapid, reversible structural rearrangements. Further studies to elucidate the electrochemically induced structural transformations of dirhenium complexes are in progress.

Acknowledgment. We thank Dr. Lucjan Dubicki for his assistance in the analysis of the optical spectra and the Institute for Advanced Studies, ANU, for financial support of this work.

- (13) (a) Bratton, W. K.; Cotton, F. A.; Debeau, M.; Walton, R. A. J. Coord. Chem. 1971, 1, 121. (b) Oldham, C.; Ketteringham, A. P. J. Chem. Soc., Dalton Trans. 1973, 2305. (c) Clark, R. J. H.; Franks, M. L. J. Am. Chem. Soc. 1976, 98, 2763. (d) Schoonover, J. R.; Dallinger, R. F.; Killough, P. M.; Sattelberger, A. P.; Woodruff, W. H. Inorg. Chem. 1002, 20, 1002. 1991, 30, 1093
- (14) Cotton, F. A.; Fanwick, P. E.; Gage, L. D.; Kalbacher, B.; Martin, D. S. J. Am. Chem. Soc. 1977, 99, 5642.
 (15) Cotton, F. A.; Walton, R. A. Multiple Bonds Between Metal Atoms; Wiley: New York, 1982; pp 58 and 235.

Research School of Chemistry Australian National University GPO Box 4 Canberra, ACT 2601, Australia Graham A. Heath* Raphael G. Raptis

Received May 1, 1991

Effect of Tridentate Phosphine Ligand Structure on the **Basicities of Tungsten Tricarbonyl Complexes**

Multidentate phosphine ligands have been used extensively^{1,2} in transition-metal coordination chemistry in part because of the

0020-1669/91/1330-4108\$02.50/0 © 1991 American Chemical Society

⁽⁹⁾ Duff, C. M.; Heath, G. A. Inorg. Chem. 1991, 30, 2528.
(10) Fanwick, P. E.; King, M. K.; Tetrick, S. M.; Walton, R. A. J. Am. Chem. Soc. 1985, 107, 5009.

Heath, G. A.; Moock, K. A.; Sharp, D. W. A.; Yellowlees, L. J. J. Chem. Soc., Chem. Commun. 1985, 15. (11)

⁽¹²⁾ Bonati, F.; Cotton, F. A. Inorg. Chem. 1967, 6, 1353.

⁽a) Meek, D. W. In Homogeneous Catalysis with Metal Phosphine (1)(a) Meek, D. W. III Homogeneous Calufysis with metal Phosphile Complexes; Pignolet, L. H.; Ed.; Plenum Press: New York, 1983; Chapter 8. (b) McAuliffe, C. A. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: New York, 1987; Vol. 2, p 989.